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ABSTRACT 

A group is said to have dense norma! subgroups, if each non-empty open 
interval in its lattice of subgroups contains a normal subgroup. The structure 
of this and related classes of groups is investigated. Typical results are: an 
infinite group with dense ascendant subgroups is locally nilpotent: a non- 
torsion group with dense normal subgroups is abelian, etc. 

There are a large number of  results dealing with the structure of  groups with 
many normal subgroups. The word " m a n y "  is, of  course, given to many inter- 
pretations. In this paper we interpret it to mean, roughly, that the lattice of  normal 
subgroups is dense in the lattice of all subgroups, under the interval topology. 
Accordingly, we give the following ( c  denotes always proper containmen 0. 

Defiaition. A group G is said to have dense normal subgroups if, whenever 
H c K _ G, H and K subgroups of G and H is not maximal in K ,  there exists 
a normal subgroup N of  G such that H c N _ K .  

Obviously, one can modify this definition by changing the word "normal"  
to some other group property, and thus obtain other classes of groups. 

In Section 1, we determine completely the finite groups with dense subnormal 
subgroups. There are all meta-nilpotent, and generally even nilpotent. In Section 2 
we show that an infinite group with dense ascendant subgroups is locally nil- 
potent. In Section 3 we deal with infinite groups with dense normal subgroups. 
I f  such a group contains an element of  infinite order, it is abelian, while an in- 
finite torsion group of this type is either a Dedekind group or an extension of  a 
central subgroup of  type C(p °D) by a finite Dedekind group. In Section 4 we 
prove that an infinite group with dense quasi-normal subgroups is locally nil- 
potent. Moreover, if such a group contains an element of  infinite order, it is 
quasi-Hamiltonian. In dealing with quasi-normal subgroups, we prove a result 
(Theorem 6) of independent interest. It states that a group generated by quasi- 

normal subgroups, which are finite nilpotent or infinite cyclic, is locally nilpotent. 
This paper is a development of  some of the results in the author's Ph.D. thesis, 
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interest, help and encouragement during the preparation of this thesis. I would 
like to thank the referee for simplifying considerably the proof of Theorem 1. 

Notation and terminology. If G is a group, a subgroup His called ascendant, i fH  
can be connected to G by means of an increasing well-ordered normal series. If this 
series is finite, H is called subnormal, denoted H <~<1 G, while H <~ G denotes that H 
is normal in G. H is quasi-normal, if it permutes with all other subgroups. It 
is known that maximal quasi-normal subgroups are normal I7, Theorem 19, 
p. 438], therefore quasi-normal subgroups of finite groups are subnormal. H is 
n-maximal in G, if there exists a chain H = H o c H 1  = . . . c H n  = G ,  with 
each Hi a maximal subgroup of Hi+ 1- A group G is a Dedekind group, if all 
its subgroups are normal, and quasi-Hamiltonian, if all its subgroups are quasi- 
normal. For the structure of these two classes of groups see, respectively, [3, 
Theorem 12.5.4] and [9, Chapter 1, Sections 4, 5]. A group is said to satisfy 
the normalizer condition, if each subgroup is different from its normalizer. 
This is equivalent to each subgroup being ascendant. A section of a group G 
is a group H/K,  where K ___ H ___ G and K <~ H. 

Z(G) denotes the center of the group G. R(G) denotes the Hirsch-Plotkin radical 
of G, which is the unique maximal normal locally nilpotent subgroup of G. 
For finite groups, R(G) = F(G), the Fitting subgroup of G. If A is a subset of G, 
<A> is the subgroup generated by A. 

1. THEOREM 1. Let G be a finite group with dense subnormal subgroups. 
Then one of the following three possibilities holds: 

a. G is nilpotent. 
b. There exists two different primes, p and q, such that G = PQ, where P 

is a p-group, which is a minimal normal subgroup of G. Q is a q-group, of one 
of the following types: 

1. Cyclic. 
2. A direct product of a cyclic group and a group of order q. 
3. The group <a, bla~"-l= b e = k ,  b- lab  =a1+~"-2>. 
4. The quaternion group. 
The centralizer of P in Q is a maximal subgroup of Q. In cases 2 and 3, 

it is the unique non-cyclic maximal subgroup of Q. 
c. G = H x C s, where H is of type b. with cyclic Q, Cs is cyclic of prime 

order s and s ~ q. 
Conversely, a group of each of these three types has dense subnormal sub- 

groups. 

Proof. First, G is solvable. Indeed, if G is not of prime order, by assumption 
G contains some proper normal subgroup, N say. By induction both N and G/N 
are solvable hence so is G. 

Assume that G is not nilpotent. Then G contains some maximal subgroup, 
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M say, which is not normal. Let K be maximal in M.  Then K is contained in 
some proper normal subgroup of G, L say and K = L n M.  Hence K <1M. 
Each maximal subgroup of M being normal, M is nilpotent. Since M is self- 
normalizing, M is a Carter subgroup of G, [1]. 

Let [ G: M [ = pn, p a prime, and let Gp be a Sylow p-subgroup of G. Let L 
be a maximal subgroup of G containing Gp. If  L is not normal, then, as for M,  
we see that L is a Carter subgroup, and therefore conjugate to M I l l  which is 
impossible. Hence L <1 G. This implies Gp <1 G (otherwise, taking L =_ N(Gp) 
yields a contradiction). Also G = MGp. 

Let H be 2-maximal in M.  By assumption, H c K c M,  where K <1<1 G and K 
is maximal in M.  I f K  is the unique maximal subgroup of M,  M is a cyclic q-group, 
for some prime q. If  M has more than one maximal subgroup, let L be maximal 
in M and L ~ K .  If  L <1 <~ G, then M <1<1 G, impossible. It follows that all 
2-maximal subgroups of M are contained in K .  Since L ¢ K ,  L is not generated 
by 2-maximal subgroups of M,  i.e. L is not generated by its maximal subgroups. 
This is possible only if L has a unique maximal subgroup, and hence L is a cyclic 
q-group, q a prime. 

Let [ M: L[ = s (a prime). If  s ~ q, then M = L × M~, M, being a Sylow 
s-subgroup of M.  If  s = q, then, working through the list of q-groups with cyclic 
maximal subgroup, one shows that those groups mentioned under b are the 
only ones with the property, that they contain a maximal subgroup containing 
all 2-maximal subgroups. Moreover, in cases b.2 and b.3 this maximal subgroup 
is the unique noncyclic one. 

Let us denote Q = M if s = q, or if M is a cyclic q-group and Q = L otherwise. 
Now L is also contained in some maximal normal subgroup of G, N say. Since 
M ~ N ,  G = MN.  Let P = Gp n N ,  then P is the Sylow p-subgroup of N ,  
and P <1 G. By order considerations (recalling [ G : M [ =  p*), G = M P .  

Assume s = p (hence s ~ q,  as G is not a p-group). Let Z = Z(G~). Then Z <1 G, 
and M normalizes ZMs. By maximality of M ,  either ZM~ = M,, which implies 
Z = M  s(since M~[ = s  = p )  or MZMs = M Z  =G (=MGp). The last equa- 
tion implies [Gp: Z[ < p,  hence Gp/Z is cyclic, and Gp = Z is abelian. In any case, 
M~ centralizes Gp. As M is nilpotent, M s centralizes also M.  Hence M,<1 G. 

Assume s ~ p and s ~ q. Then M~ is normal in K ,  hence subnormal in G. 
M, being now a Sylow subgroup of G, we again obtain M~ <1G. 

If  p = q, G is either a p-group, or G = M~ x Gp, and is nilpotent in either 
case. Hence p ~ q .  Therefore P ¢3Q = 1, and P ~ M  c Ms. If  P ~ M ~  1, 
then P n M ---M~, hence N ~_ LMs = M ,  a contradiction. Thus P n M = 1. 
Therefore either G = PQ (when M = Q) or G = M~ x PQ. By maximality of 
M ,  P is a minimal normal subgroup. M does not centralize P ,  since G is not 
nilpotent. However, K does centralize P ,  being equal to either Oq(G) or M~ x Og(G) 
This ends the proof of Theorem 1. 

We omit the verification of the converse part. 
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COROLLARY. Let G be a finite group with dense subnormal subgroups. I f  H 
is an n-maximal subgroup of G, for some n > 3, then H is nilpotent and sub- 
normal in G. 

Proof. We need consider only cases b. and c. in Theorem 1. We shall give 
the details only for case b., the other one being very similar to it. Let, then, 
G = P Q ,  with P and Q as in b. Let E =CQ(P), then it is obvious that 
F(G) = E × P,  and we are given that IQ:EI = q" Let H be any subgroup of 
G. If H ~= F(G), then H is nilpotent, with F(G). H is also subnormal in the nil- 
potent group F(G), and since F(G)<]G, H < K G .  We may assume, then, that 
H ~= F(G). Write H = H,H, ,  where Hp and H~ are the p-Sylow and a q-Sylow 
subgroups of H ,  respectively. Then Hp ___ P,  and we may assume that Hq ___ Q. 
Since H ¢: F(G), Hq ~ E. As E contains all subgroups of Q of index qZ, Hq = Q 
or Hq is a maximal subgroup of Q different from E. In any case, Q = HqE, so 
Hq induces on P the same automorphism group as Q. Since Q is irreducible on 
P ,  it follows that the p-Sylow subgroup in any subgroup containing Hq is 1 or P .  
Hence the only subgroups containing H~ are Hq, H~P, Q and G. Hence H~, 
and also H ,  cannot be n-maximal, for any n > 3. 

2. THEOREM 2. An infinite group with dense ascendant subgroups is locally 
nilpotent. Moreover, each finitely generated subgroup of such a group is 
ascendant. 

Proof. Let G be a group with dense ascendant subgroups. Suppose we know 
already that G is locally nilpotent, and let H be any finitely generated sub- 
group of G. One can find another finitely generated subgroup, K, such that 
H c K and H is not maximal in K. By assumption, there exists an ascendant 
subgroup of G, L, such that H c L c K.  As G is locally nilpotent, L is nilpotent, 
therefore H is subnormal in L and ascendant in G. Hence the second statement 
of the theorem follows from the first. To prove that G is locally nilpotent, we 
: ssume first that G is a torsion group. We shall begin by proving that G contains 
a cyclic ascendant subgroup. 

Let H be a finite subgroup of G. If p2 ] ] HI ,  for some prime p, then H con- 
tains a subgroup P of order pZ. By assumption, an ascendant subgroup of G 
lies between (1)  and K,  and this subgroup is cyclic (of order p). On the other 
hand, if IHI is square-free, but not prime, then by [3, Corollary 9.4.1-1 H con- 
tains some subgroups of order pq, p and q primes, and therefore G contains 
some ascendant subgroup of order either p or q. 

We may assume, then, that each finite subgroup of G has prime order. 
Let 1 ~ a ~ G, let p be the order of a,  let b ~ G, b ~ ( a ) ,  let q be the order 

of b, and denote H = (a, b). Then H is infinite. 
We shall construct, by induction, a properly decreasing sequence {H~} of 

subgroups of H ,  each of them normal and of finite index in H .  
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First, define H 0 = H.  Next, suppose H i has already been found. As a subgroup 
of finite index in the finitely generated group H ,  H~ is also finitely generated. 
Therefore H~ contains some maximal normal subgroup, K say. 

Assume K is not maximal in Hi. Then some subgroup L, lying properly be- 
tween H~ and K ,  is ascendant in G, hence also in Hi. Let {L,} be an ascending 
normal series from L to H~, and let La = Hi be its last term. Since H~ is finitely 
generated, fl is not a limit ordinal. Hence La_ 1 is a normal subgroup of H~ properly 
containing K ,  a contradiction. Thus K is a maximal subgroup of  H~. 

Being maximal and normal, the index of K in H~ is prime. Therefore I H:KI 
is finite, and thus K contains some subgroup which is normal and of finite index 
in Hi. This subgroup can be taken as H~÷ 1. 

The groups H/Hi are all finite groups with dense subnormal subgroups. More- 
over, each of these groups is, with H ,  generated by two elements, g~ and hi say, 
of order p and q respectively, and each element of H/Hi has a prime order. 

Each group H/Hi is of the type described in Theorem 1. Suppose first it is 
of type b. Then H/Hi = PQ, as in Theorem 1. Q is a homomorphic image of 
PQ, so, being an r-group for some prime r ,  Q has exponent r ,  which shows, 
using Theorem 1, that ] Q I < r2" Here r = p or r = q. P is acted irreducibly 
upon by a group of  order r ,  hence its order must be s ' ,  for some prime s, with 
n being the order of s (mod. r). If H/H j, for j > i,  is also of type b., then r and s 
must be same for H/Hj and H/Hi, because In:n,I In:n l. Hence In:nil 
< rZs" , so there are only a finite number of groups of type b. of Theorem 1 among 
the groups H/Hj. In almost the same way, one proves that only a finite number 
of the H/Hg's are of type c. Suppose H/Hi is nilpotent. If  p ~ q,  then H/H~ is 
necessarily the abelian group of order pq. If p = q, H/H~ is a finite group, with 
two generators and of exponent p .  There are only a finite number of  such groups 
by a fundamental result of Kostrikin [4-]. Hence there are only finitely many of 
the H/H[s, an obvious contradiction. 

This proves that G contains some ascendant cyclic subgroup. This, in turn, 
implies that the Hirsch-Plotkin radical, R(G), of G, is non-trivial (e.g. I-2, Theorem 
23). 

Define a sequence {R,} of subgroups of G as follows: 

R o = ( 1 ) ,  R,+t/R, = R(G/R3, Rz = [,..J R. 

if 2 is a limit ordinal. Since each factor group G/R, satisfies the same conditions 
as G, R~+a ~ R~ unless G = R,.  Therefore G = Rj, for some ordinal p.  As 
each group R,+~/R, is locally nilpotent and torsion, therefore locally finite, G 
itself is lccally finite. 

Let H l:e any finite subgroup of G. One can find another finite subgroup, K, 
such that H c K ,  and H is n-maximal in K ,  where n > 3. By the corollary of 
the preceding section, H is nilpotent. Hence G is locally nilpotent. 
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Next, assume G is not a torsion group. Let a ~ G have infinite order, and 
p be a prime. Then some ascendant subgroup lies between ( a )  and (aP2), therefore 
(a  p) is ascendant in G. Similarly, if q is any other prime, (a  ~) is also 
ascendant, and therefore ( a )  = (a  q) (a  q) is ascendant [2, Theorem 2]. Hence 
a e R(G). 

We show now that G is locally nilpotent, by proving that G is generated by 
its elements of infinite order, and hence G = R(G). 

If  G is torsion-free, there is nothing to prove. Let, then, 1 ~ b ~ G be a torsion 
element, and let a be an element of infinite order. Consider H -- (a,  b ) .  R(H) 

contains all elements of infinite order in H ,  therefore H[R(H) is a finitely generated 
torsion group, which, if it is infinite, is locally nilpotent by the first part of the 
proof. Thus H[R(H) is finite, R(H) has finite index in H ,  and thus R(H) itself 
is a finitely generated infinite nilpotent group. By 118, 7.1.11] R(H) contains a 
torsion free subgroup, K ,  which is normal and of finite index in H .  

Denote Z = Z(K) ,  and consider (b, Z ) .  Let m be an integer, prime to the order 
of b, and divisible by four different primes at least. Since Z is free abelian of 
finite rank, (b,  Z ) ]Z"  is a finite group with dense subnormal subgroups, which 
is nilpotent, by Theorem 1. As ( b ) Z m / Z  ra and Z/Z  m have relatively prime order, 
we obtain l'b, Z] ___ Z m. Taking an infinite sequence of such m's shows that b 
centralizes Z.  Hence, if k # z e Z,  both z and bz have infinite order, and 
b = bz • z -1  belongs to the subgroup generated by the elements of infinite order 
in G. This proves our assertion, and completes the proof of Theorem 2. 

3. TI-IEOR~M 3. Let G be a group with dense normal subgroups. I f  G con- 

tains an element of  infinite order, then G is abelian. 

Proof. Let a be an element of infinite order. Let p and q be different primes. 
As in the proof of Theorem 2 (a  ~) <1G and (a  p) <1 G, so ( a )  <] G. Hence, for 
each g e G ,  g - l a g  = a or g - l a g  = a -1 .  

Let b be another element of infinite order. If  b does not commute with a ,  
then b-~ab = a -~,  and by symmetry, a- lba  = b -~.  Hence, b-2ab 2 = 
= b-~a-Xb = a ,  and a commutes with b 2, while a-~b2a = b -z ,  a contra- 
diction. So all elements of infinite order commute with a .  

Let c be an element of finite odd order. If  c does not commute with a ,  then 
c- lac  = a -~, c -Zac  z = a,  so c 2 commutes with a .  Since c is a power of c z ,  

c does commute with a .  
Lastly, let c be an element of finite even order which does not commute with a .  

Again, c -1 ac = a - t  and c 2 commutes with a .  Hence c 2 is central in ( a , c ) .  

Consider (a,  c ) / ( c  2) = (d,  6), where ~ = a(c2) ,  6 = c(c2).  This is also a group 
with dense normal subgroups. In particular, some normal subgroup, H, of (a ,  6) 
lies between (6)  and (6, a3) .  ~ e H implies d-26 = a - 1 ~a e H ,  so also d - z  ~ H ,  
and hence a 2 ~ (6, a3) ,  which is not true. So a commutes with all elements of 
of G,  and is central in G. 
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In the same way we prove that each element of G of infinite order is central. 
Let b e G have finite order, then ab has infinite order, so a and ab are in the center 
of G, and so is b = a -  *. ab. So each element of G is in the center, i.e., G is abelian. 

THEOREM 4. Let G be an infinite group with dense normal subgroups. 

Then G is nilpotent, and o f  class 3 at most. 

Proof. By Theorem 3, one may assume that G is a torsion group. Theorem 2 
implies that G is a locally finite group (we remark that, with the present stronger 
assumption, the proof of Theorem 2 can be modified, so as to avoid the use of 
Kostrikin's deep result. See proof of Theorem 7). Let H be any finite subgroup 
of G. One can add enough elements of H ,  so as to get another finite subgroup K ,  
with H c K and H not maximal in K .  By assumption, there exists a subgroup L 
such that H c L c K and L <1 G. All the conjugates of H are contained in the 
finite group L, therefore H has only a finite number of conjugates in G. 

Next, let H be an infinite subgroup of G. Let a e H ,  then, by assumption, 
there exists a subgroup No satisfying a e No c H and No <1G. Since H =I-Io ~, No, 
we obtain H <~ G. 

Thus, all the subgroups of G have only finitely many conjugates. By a result 
of  B. H. Neumann [5], [G:Z(G)[ is finite. Therefore each subgroup containing 
Z(G) is infinite, and, by the preceding paragraph, normal in G. Therefore in G/Z(G) 

each subgroup is normal, and G/Z(G) is a Dedekind group. In particular, G/Z(G) 

is nilpotent of class =< 2, so G itself is nilpotent of class < 3. 
An example of an infinite group with dense normal subgroups which is not a 

Dedekind group is constructed as follows. Let p be an odd prime, and let A be 
a group of  type C(p~).  Let B = <b> be a group of  order p.  Adjoin to the direct 
product A x B an element c satisfying: ca = ac for all a ~ A ,  bc = cbz,  where z 
is an element of order p in A,  and c p = 1. Then the group G = <A,B, c> has 
dense normal subgroups. 

To see this, notice that G' = <z>, hence any subgroup containing z is normal. 
Denote D = <b, c> then z e D, D is the non-abelian group of order pa and ex- 
ponent p,  and G = AD.  Let H be a subgroup of G not contained in D, and let 
h e H ,  h ~ D. Write h = ad,  a ~ A ,  d ~ D,  then h p = a n ~ 1 (otherwise a e <z> 
and h e D). Therefore <z> _ H .  On the other hand, if H _ D and [ H I --> p2, 
then again z e H.  

Now let K c H be any two subgroups of G, with K non-maximal in H.  Then 
I H I --> p2, SO our previous remarks show that z e H and hence <K, z> is a normal 
subgroup of G. If  z ~ K ,  then this subgroup lies properly between H and K ,  
while if z e K then any subgroup lying between H and K will do. 

The next result shows, that this example is typical of the general case. 

THEOREM 5. Let G be an infinite p-group with dense normal subgroups. 
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I f  G is not a Dedekind group, it contains a central subgroup C of type C(p°°), 
such that G/C is a finite Dedekind group. 

Proof. Since G is not a Dedekind group, there exists some cyclic subgroup, 
A say, which is not normal. Let Z = Z(G) and H = AZ. As we have seen in the 
preceding proof, Z has finite index in G and all subgroups containing Z are 
normal. Therefore H <~ G. Also A <~ H and H/A _~ Z/Z n A is an infinite abelian 
p-group. 

Let B/A be any subgroup of order p2 of H/A.  By assumption, there exists a 
subgroup K ,  A c K c B, such that K <1 G. If  D is any other subgroup such that 
[ D: A [ = p,  then A = K n D. Since K is normal in G, while A is not, D is not 
normal in G. Therefore K is the only normal subgroup of G such that A ~ K 

and IK:AI  = p. 
If  K/A is the unique subgroup of order p in H/A, then H/A ~ C(p°°). Assume 

D/A is another subgroup of order p in H/A. Then H = DZ, hence D '~ H. Let 
D c E = H, [E:o[ =p.  Then some normal subgroup of G lies between and E, 
and by the previous paragraph, this is K. Since D ~ K, we have E = DK and 
E/D = KD/D. Thus KD/D is the unique subgroup of order p in H/D, implying 
n/o C(p°°). 

Thus, either Z/A n Z or Z/D r~ Z is isomorphic to C(p°~), and A O Z(D n Z) 
is finite. Hence Z satisfies the minimum condition. Being an abelian p-group, 
Z is a direct product of a finite group and a certain number of copies of C(p°°). 
Since Z has a finite subgroup with quotient group isomorphic to C(p~), only 
one copy of C(p oo) can appear in the decomposition of Z. Let C be this subgroup. 
Then [Z: C [, and hence also [G: C [, is finite. It was established in the proof of 
Theorem 4, that each infinite group of G is normal. Hence each subgroup con- 
taining C is normal, and G/C is a finite Dedekind group. 

By appealing to Theorem 8, one sees that "p-group" in the formulation of 
Theorem 5 can be changed to "torsion group".  

4. For the investigation of groups with dense quasi-normal subgroups, we 
need the following preliminary 

THEOREM 6. Let the group 
each of which is either infinite 
nilpotent. 

result (probably of independent interest). 

G be generated by quasi-normal subgroups, 
cyclic or finite and nilpotent. Then G is locally 

If, furthermore, all of the generating subgroups are finite, then G satisfies 
the normalizer condition. 

Proof. The first assertion is equivalent to the following: a group generated 
by finitely many quasi-normal subgroups of the type described in the theorem 
is nilpotent. We shall prove the theorem in this form, beginning with the case 
of two factors. 

Let, then, G = HK, where H and K are quasi-normal, and either infinite cyclic 
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or finite nilpotent. First, if both H and K are finite, then G is finite, and H and K 
are subnormal nilpotent subgroups, so G is nilpotent. 

Next, suppose H is infinite and K is finite. Then H has a finite index in G, there- 
fore it contains a subgroup, H s, also of finite index in G, such that H 1 <1 G. Let p 
be a prime not dividing I KI For each n, HsK/H~" is nilpotent (by the previous 
case), and finite, with H1/H~" as Sylow p-subgroup. Therefore K centralizes 
Hs/H~". Since c3 H~ * --- 1, K centralizes H s. Hence H 1 ~_ Z(G). G/H 1 is nilpotent, 
by the previous case, therefore G itself is nilpotent. 

So now suppose H and K are both infinite cyclic. If  H c3 K # 1, then 
H n K ~_ Z(G), and G/H c3 K is finite, so G is nilpotent, as before. We may 
assume then H c3 K ---1, which means that each element of G is uniquely ex- 
pressed as hk, with h e H, k e K. 

Let H = ( h ) ,  K = ( k ) .  Since H K = K H ,  h k = k l h s ,  with k s e K ,  h s e H .  
Let K s = ( k l ) ,  then hk e K i l l  = HK~. If  Ks # K, we get a contradiction to the 
uniqueness of the expression hk. Therefore K 1 = K  and kl = k  ±t. Similarly, 
hs = h  i t  

Suppose k s = k .  Then hk =kh  s, so k - l h k  =hs,  and k - S i l k  = H , H  <~ G. 

I fhs  --- h - t ,  then G/HPK 2, where p is a prime # 2, is a dihedral group of  order 2p, 
which is not nilpotent, and thus contradicts the first portion of  the proof. Therefore 
h s = h, and G is abel±an. 

Similarly, if hi = h, we find that kl = k and G is abel±an. There remains the 
case hk = k -S h  -s .  Since h -1 is also a generator of H, then, replacing h by h -s  
in the above arguments, we see that we may also assume h - lk = k-  1 (h- 1 ) - 1 = k- ~h. 
But then k - Sh 2k = k - lh • hk = h - Lk • k - Sh - s = h - 2. Therefore H 2 = ( h 2 ) < ~  G. 

For  p as above, we find now that H2K/H2pK 2 is not nilpotent, which is again 
a contradiction. This concludes the proof  for two factors (in the last part of  the 
proof  we have actually shown, that a product of two infinite cyclic quasi-normal 
subgroups with trivial intersection is abel±an.) 

Now let G = HsH2 ... H,, with each H i quasi-normal and either infinite cyclic 
or finite nilpotent subgroup. It follows from the proof  for n = 2, that, for each 
pair (i,j), I H~: Cn, (Hi) is finite, (this ho!ds also for i=j) .  Therefore, denoting 
K,=n,  Cn,(Hj), IH:Ki  is finite, and Ic:gsg2gnl is finite. Obviously, 
Ki ~JZ(G), so I G:Z(G) is finite. Each of the subgroups HiZ(G)/Z(G ) is quasi- 
normal and nilpotent in the finite group G/Z(G), therefore each such subgroup 
is subnormal, so G/Z(G), and with it G, is nilpotent. 

We now prove the second assertion. Let G be generated by finite nilpotent 
quasi-normal subgroups. Let H be a subgroup of G. We may assume H ~ G. 
Therefore there exists a subgroup K, finite nilpotent and quasi-normal in G, 

such that K $ H. H is of finite index in HK, therefore H contains a subgroup H s 
which is normal and of finite index in HK. By the first part of the theorem, G is 
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locally nilpotent, hence KH/H, is nilpotent. Therefore H/H, <1<1 HK/H 1, implying 
H <1<1 HK and, as H ~ HK, H ~ N(H). 

TrI~OREM 7. Let G be an infinite group with dense quasi-normal subgroups. 
Then 

a. I f  G is a torsion group, it satisfies the normalizer condition. 
b. I f  G contains an element of infinite order, it is quasi-hamiltonian. 

Proof. Given any group H, denote by Q(H) the product of all finite nilpotent 
quasi-normal subgroups of H. If we can prove that, for G a torsion group with 
dense quasi-normal subgroups Q(G) ~ 1, then the argument proving G = R(G) in 
the proof of Theorem 2 yields that, under the same assumptions, G = Q(G), 
hence a. follows from Theorem 6. 

Let, then, G be a torsion group with dense quasi-normal subgroups, and assume 
Q(G) = 1. As in the proof of Theorem 2, this implies that each finite subgroup of 
G has prime order. Let 1 ~ g e G and h e G, h ~ (g) .  Let the primes p and q 
be the orders, respectively, of g and h. Let H -- (g, h). 

If (g )  is not maximal in H, we can find a quasi-normal subgroup, K, such that 
(g )  c K c n .  Then n = ( g , h )  = ( h ) K ,  therefore IH:KI  =q.  If (g )  is not 
maximal in K, we find another quasi-normal subgroup, L, with ( g ) c  L c K. 
Then H = (h)L,  and I H:LI  = q, implying L =K.  Therefore (g )  is maximal 
in K. We can replace H by K, to assume that (g )  is maximal in H. 

H being infinite, there must be some quasi-normal subgroup of G, M say, 
such that ( 1 ) =  M c H. If M = (g) ,  then maximality of (g )  in H implies 
(g) ,~  H, hence In :  <g> I is finite, and n is finite. Therefore M ~ (g) .  Now the 
maximality of (g )  implies that H = (g )M,  and ]H:M I = p. This implies that 
M is infinite, and therefore there exists a quasi-normal subgroup, N, i with 
(1)  = N c M. As above, we have N ~ (g) ,  H = (g)N,  I H: N I = p and therefore 
M = N. This is the sought-for contradiction. 

We now prove b. Let G be a group with dense quasi-normal subgroups, and let 
g be an element ofinfinite order in G. As in Theorems 2 and 3, (g )  is quasi-normal. 
Let h be any element of G of finite order. Then (g )  has finite index in (g, h) 
= (g) (h) .  Hence, for some i, (gi)  <~ (g, h). Let n be an integer relatively prime 

to the order of h and divisible by 3 primes at least. Then Theorem 1 shows that 
(gt, h)/(gn~) is nilpotent, hence [g~,h] ~ (gnU). By taking a sequence tending to 
infinity of such n's we obtain Ig ~, h] = 1. This implies h = g - i .  g~h, where both 
g-~ and g~h have infinite order. Therefore G is generated by its elements of in- 
finite order. 

Let H be any finite subgroup of G. We claim that H is contained in some finite 
quasi-normal subgroup. Assume this is not the case. Then, by the assumption of 
density, H is contained in a subgroup K which is a maximal finite subgroup of 
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G (H = K or H is maximal in K). K contains a maximal subgroup, L say, which 
is quasi-normal in G. If M is any conjugate of L, then M is also quasi-normal, 
so maximality of K implies K = K M  and M __ K. If K is generated by the con- 
jugates of L, then K <] G, a contradiction to our assumption on H. Hence L <] G. 
We can pass to the group G/L, and hence assume that K has prime order. 

Let g be an element of of infinite order. Then (g)  is quasi-normal and maximal 
(of prime index) in ( g ) K ,  hence (g)  <~ (g)  K. The argument in the first paragraph 
of the proof, with g repIacing g~, show, that g centralizes K. As G is generated 
by the elements of infinite order, K is central in G, hence normal, a contradiction. 

It follows, that the set of elements of finite order in G coincides with the product 
of all finite quasi-normal subgroups, hence it forms a characteristic subgroup F. 

Let again g be an element of infinite order, and H a finite subgroup. Then 
H = H (g)  ~ F, so that H <~ H ( g )  and g E N(H). As G is generated by all these 
g's, H <] G. Together with the fact that all infinite cyclic subgroups of G are 
quasi-normal, this shows that all cyclic subgroups, hence all subgroups, are 
quasi-normal. 

5. Let G be an infinite torsion group with dense subnormal subgroups. By 
Theorem 2, G is locally nilpotent, and hence a direct product of its Sylow sub- 
groups. We now discuss this decomposition. Everything in this section remains 
true if we substitute either "normal", "quasi-normal" or "ascendant" for 
"subnormal" throughout. 

DEFINITION. A group G is said to have property (P) if, whenever H and K 
are subgroups of G, with H maximal in K, then either H or K is subnormal in G. 

THEOREM 8. Let G be an infinite torsion group with dense subnormal sub- 
groups. Then at least one of  the following holds: 

a. G is a p-group. 
b. Each subgroup of G is subnormal. 

c. G = H x Cr, where H is a p-group having property (P), C, is a group of 
order r, and r is a prime different from p. 

Conversely, i f  G = H x C,, where H is a p-group having property (P) and 
with dense subnormal subgroups, C, is a group of order r, r is a prime, and 
r # p, then G has dense subnormal subgroups. 

Proof. Let the decomposition of G into a direct product of its Sylow sub- 
groups be 

G =Gpl x G p 2 x . . .  

the p,'s are different primes, and Gp, is the prSylow subgroup of G. We assume 
that Gv, # 1 for each i. Suppose neither a. nor b. holds. Then there exists some 
subgroup H of G which is not subnormal. H is also a direct product of its Sylow 
subgroups, and at least one of these is not subnormal in G. Suppose Hp,, the 
px-Sylow subgroup of H, is not subnormal. Let K be a subgroup of order pq of G, 
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where p and q are primes different from Pl (but p = q is possible). Then some 
subnormal subgroup of  G, L say, lies between Hp, and Hp, x K. Hpl is the Pl- 
Sylow subgroup of  L, therefore Hpl is subnormal in G. This contradiction shows 
that no such K exists, which is possible only if G = Gpl x Cr, r ~ p. Let M and N 

be subgroups of  Hp,, with M maximal in N. Then some subnormal subgroup 
of  G lies between M and N x C,, and this subgroup can be only N or M x C,. 
Therefore either M or N is subnormal in G, showing that H has property (P), 
and that G satisfies c. 

The converse part of  Theorem 7 is easily verified. It is natural to ask whether 
groups with property (P) have dense subnormal subgroups. Let us call a group 
a T-group, if it is infinite and each proper subgroup of  it has prime order. It is 
not known if such groups exist (the question of their existence is attributed in 
[6] to Tarski). A T-group, if one exists, would be a group with property (P) and 
not having dense subnormal subgroups (or any subnormal subgroups). Let us 
show that this is essentially the only obstacle. 

PROPOSITION. Let G be a group with property (P). I f  no section of G is a 
T-group, then G has dense subnormal subgroups. 

Proof. Let H and K be subgroups of  G such that H c K, but H is not maximal in 
K. Suppose no subnormal subgroup of G lies between H and K. Let a e K -  H. 
Then H is contained in some maximal subgroup, L say, of  H I = (H ,a ) .  By 
property (P), either L or H1 is subnormal. Since H is not maximal in K, we may 
choose a such that H1 ~ K. Therefore L = H and H<]<~G, otherwise either 
L or H 1 would be a subnormal subgroup Iying between H and K. Now choose 
b e K - H 1 and let M be a maximal subgroup of H 2 = (H ,  a, b)  containing H 1. 
Similar reasoning yields H 2 = K and K <]<l G. Also M = H~, or we could choose 

b e M and obtain H 2 ~ K. 
I f  some subnormal subgroup of K contains H, then this subgroup is also sub- 

normal in G, therefore it is either H or K. Hence H is a maximal subnormal 
subgroup of  K, forcing H <1 K, and also showing that K/H is simple. If  N/H is 
any proper subgroup of K/H, we may choose a e N in the preceding paragraph, 
so that H1 c N. As H~ is maximal in K, H~ = N, and N[H is maximal in K/H. 
Since each subgroup of the torsion group K[H is maximal, each such subgroup 
has prime order. If  K[H were finite, it would have order p2 or pq (p, q primes) 
and thus would not be simple. Therefore K/H is a T-group, a contradiction. 

This concludes the proof. 

REFERENCES 
1. R. Carter, Nilpotent self-normalizing subgroups of soluble groups, Math. Z. 75 (1961), 

136.-139. 
2. K. W. Gruenberg, The Engel elements of a solvable group, Ill. J. Math. 3 (1959), 151-168 
3o M. Hall, The Theory of Groups, Macmillan, l',lew York, 1959. 



Vol. 6, 1 9 6 8  GROUPS WITH DENSE NORMAL SUBGROUPS 25 

4. A. I. Kostrikin, The Burnside problem, Isv. Akad. Nauk. SSSR Set. Mat. 23 (1959), 
3-34 (Russian). 

5. B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z. 63 (1955), 
76--96. 

6. M. F. Newman AND J. Wiegold, Groups with many nilpotent subgroups, Arch. der Math. 
15 (1964), 241-250. 

7. O. Ore, Contributions to the theory of  groups of  finite order, Duke Math. J. 5 (1959), 
431-460. 

8. W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, 1964. 
9. M. Suzuki, Structure of a group and the structure of its lattice of subgroups, Ergebnisse 

der Mathematik und ihrer Grenzgebiete, 10 (1956), Springer, Berlin. 

HEBREW UNIVERSITY OF JERUSALEM, 

AND 
UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 


